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Hydrodynamic Limit of a Nongradient 
Interacting Particle Process 
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A simple example of a "nongradient" stochastic interacting particle system is 
analyzed. In this model, symmetric simple exclusion in one dimension in a 
periodic environment, the dynamical term in the Green-Kubo formula con- 
tributes to the bulk diffusion constant. The law of large numbers for the density 
field and the central limit theorem for the density fluctuation field are proven, 
and the Green-Kubo expression for the diffusion constant is computed exactly. 
The hydrodynamic equation for the model turns out to be linear. 

KEY WORDS: Nonequilibrium statistical mechanics; interacting particle 
systems; hydrodynamic limit; Green-Kubo formula; simple exclusion process. 

I N T R O D U C T I O N  

Recent results in the hydrodynamic  theory of stochastic, reversible, 
interacting particle systems lead to the conclusion that our  understanding 
of models enjoying the so-called "gradient" condit ion is in relatively good  
shape. For  these models, with certain exceptions, one now has a scheme of  
general validity for proving the law of  large numbers  (LLN)  for the density 
field (6'9) and the central limit theorem (CLT)  for the equilibrium density 
fluctuation field. (1-3'14) The bulk diffusion constant  is given by the first term 
in the G r e e n - K u b o  formula and is computable  and always strictly 
positive. (2'13) (One exception to this picture is the interacting Brownians,  (14) 
for which the L L N  has not  yet been proven, due to purely technical dif- 
ficulties with unbounded  densities.) Only  the nonequil ibrium fluctuation 
theory i s - - I  refer to r igorous resul ts-- in  relatively bad shape. 
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What is the gradient condition? Fick's law of diffusion states that the 
current should be given by minus the bulk diffusion "constant" (it generally 
is a function of the density) times the density gradient. "Gradient" models 
are (stochastic) models in which the nonrandom part of the current is 
given by the "gradient" of a local function. The local equilibrium 
assumption then implies that the expected current is a "gradient" of a 
(generally nonlinear) function of the local density, and hence proportional 
to the density gradient itself. Thus, in this class of models there is a sort of 
exact microscopic form of Fick's law holding. In particular, there is a 
simple formula, involving only (derivatives of) equilibrium expectations of 
local functions, for the transport coefficient. 

Examples of gradient models which have been considered are: sym- 
metric simple exclusion and some one-dimensional generalizations 
(exclusion processes with speed change, also called "lattice gases")(2); the 
zero-range process(l'16~; interacting Brownians(14); and a model with 
continuous spins on the lattice called the Ginsburg-Landau model. (4'6) 

Unfortunately, gradient models form only a set of low dimension (in 
some sense) in the space of stochastic, reversible models with local conser- 
vation laws. [This is most easily seen for the family of reversible exclusion 
processes with speed change, in which gradient models with nearist- 
neighbor jumps and interactions form a surface of codimension two in one- 
dimensional models and reduce to a point (symmetric simple exclusion) in 
higher dimensions. (13) The "generic" model is nongradient. Until recently, 
there were no successes (in the rigorous sense) for nongradient models. 
Now, however, Fritz (5) and Varadhan ~17) have separately treated non- 
gradient generalizations of a Ginsburg-Landau type model. In this paper I 
treat what is probably the simplest nongradient particle model: the simple 
exclusion process with periodic (alternating)jump rates, in one dimension. 
This example was suggested several years ago to the author by H. Spohn, 
who also discovered that the Green-Kubo expression for the bulk diffusion 
constant in this model could be evaluated explicitly. Using a curious iden- 
tity (which gives a useful decomposition of the current into gradient-plus- 
negligible term) together with the Guo-Papanicolaou-Varadhan entropy 
argument (ref. 6; see also ref. 16), I prove the LLN for this model, and 
verify that the bulk diffusion constant is indeed given by the Green-Kubo 
formula. I also treat the equilibrium fluctuations. 

This model should not be thought of as a "generic" case. Although 
genuinely nongradient, there are certain simplifying features (such as the 
decomposition mentioned above) that one does not expect in the "generic" 
nongradient model. In addition, the hydrodynamic equation for the model 
comes out to be linear. Thus, it shares this feature with the usual simple- 
exclusion process (a gradient case). The bulk diffusion "constant" comes 
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out genuinely constant, equal to the harmonic mean of the two jump rates 
(the author thanks H. Rost for pointing out this fact). 

In the first section I introduce the model, the hydrodynamic scaling, 
and discuss the meaning (in mathematical terms) of the nongradient 
property. The hydrodynamic equation for the model is also introduced. In 
a second section the results are stated. A third section contains some iden- 
tities used for the analysis of the model. In the fourth section the proofs of 
the theorems stated in Section 2 are sketched. [Since the proofs are even- 
tually reduced to establishing for this model facts already proven in other 
contexts, and since these facts can be proven using the same techniques 
(modulo the necessary changes), only the essential points will be discussed 
in any detail.] A fifth section introduces the Green-Kubo formula, and 
evaluates it using an identity proved in Section 3. A final section contains 
some remarks. The reader less interested in the mathematical details of the 
proofs might simply skip Section 4. 

1. THE M O D E L  

Our process will be a finite-volume, continuous-time Markov process 
in a space of particle configurations. The state space of our process will be 

~2K = {0, 1 }{a.2,.._.2X} (1.1) 

where K is a positive integer. Thus, a configuration is a zero-or-one-valued 
function rl(x), where x denotes a site (1 ~< x ~< 2K), and t/(x)= 1 (0) is inter- 
preted as x occupied (unoccupied) by a particle. Particles jump to nearest- 
neighbor sites, provided they are unoccupied, with symmetrical rates 
which, however, depend on the site where the particle is sitting. If the par- 
ticle is at an even-numbered site, the jump rate will be c~ > 0; it will be fl > 0 
at odd-numbered sites. Thus, the infinitesimal generator of the process 
will be 

Lf(.) : Y~ {~.(x)[1 - . ( x +  1)] +/~(x + 1)[1 - . ( x ) ] }  
2ix 

• [f(ttx.x+ 1)__f(t/)] 

+ Z {flt/(x)[1 - t l ( X +  1)] +C~tl(X+ 1)[1 - t/(x)] } 
2~,x 

• [ f ( t f f  "x+ ') - f ( q ) ]  (1.2) 

where t/x,x+t denotes q with the occupations of x and x +  1 interchanged, 
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and we use periodic boundary conditions so that addition is taken modulo 
2K. The transition probabilities are determined by L in the usual way: 

Pt(q' I ~/) = eLt(tl ', q) (1.3) 

See, e.g., ref. 10. The corresponding continuous-time Markov process will 
be denoted t/t, t ~> 0. Note that particle number is conserved. 

The special case cr =f l  is the famous symmetric simple exclusion 
process, about which almost everything is known. (See ref. 2 and references 
therein.) Taking a ~ fl gives our nongradient model. I will next discuss this 
point, and introduce hydrodynamic scaling at the same time. 

Let e = (2K)-1, and set the lattice spacing equal to e. Regard the con- 
figuration q as a particle configuration in the interval [0, 1 ]. We consider 
the limit K ~  oe ( e ~ 0 )  while speeding up the time by a factor of 5 -2. 
Given a C o~ test function ~b with period one, define the density field by 

X~((b) = e ~ (b(~x) rl~-2t(x ) (1.4) 
x = l  

Now set ~ = fl and consider the time derivative of the expected value of the 
density field (with arbitrary initial distribution). After an easy computation 
(left to the reader) one finds 

~?t EX~(O) = ~ -2ELX~(O) = o~ ~ qk"(~x) EG-2t(x ) + O(~) (1.5) 
x 

The "gradient condition" in its simplest form can be seen in (1.5): the 
factor of ~ 2 has disappeared, absorbed into a second derivative on the test 
function. [-In other gradient models the occupation variable t/(x) appearing 
on the right side of (1.5) may be replaced by a different local function, e.g., 
q(x) tt(x + 1). The crucial point is the appearance of the second derivative]. 

From (1.5) one obtains easily (for suitable initial states, by a com- 
pactness argument) that the expected density satisfies the diffusion 
equation in the hydrodynamic limit. Much more has been proven for this 
case: the LLN, local equilibrium, fluctuation theory, etc. The analysis o f  
this special case is greatly simplified by the existence of a "dual" represen- 
tation for the hierarchy of correlation functions in terms of finite particle 
systems. (2) 

Next let us consider the case ~ # ft. To make the calculation more 
transparent, I first introduce the current functions: 

j ( x , x + l ) = o ~ r l ( x ) [ 1 - t l ( x + l ) ] - ~ q ( x + l ) [ - 1 - t l ( x ) ]  if x is even 

= f l t l ( x ) [ 1 - q ( x + l ) ] - o t t l ( x + l ) [ l - q ( x ) ]  if x is odd 

(1.6) 



Interacting Particle Process 877 

In terms of these functions one has 

L r l ( x ) =  j ( x -  1, x ) -  j ( x ,  x +  1) (1.7) 

If ~ =/~, j ( . ,  �9 ) is a gradient: 

j ( x ,  x + 1 ) = o~(rl(x ) - q ( x  + 1 )) 

which leads to (1.5). However, if ~ ~/~, we obtain in place of (1.5) 

~- 2L {5 ~ O(~x) n(x)} 

=5 2 {e~x q~(sx)[j(x--l,x)--j(x,x+ l)] } 

=~-~ {~ y~ [~(sx)- ~(~(x- 1))] j(x- 1, x) 
2Ix 

+5 ~ [~b(e(x+ l))-~b(ex)] j ( x ,  x +  11} 
2Ix 

=5 Z 8-1(f(5x)[J( x -  1, x)+j(x, x +  1 ) ]  
2Ix 

5 
+ ~  ~ qY'(ex)[--j(x- 1, x ) + j ( x ,  x + 11] + 0(5) 

2Ix 
(1.8) 

From (1.6) we find for x even 

j ( x  -- 1, x )  + j ( x ,  x + 1 ) 

= f lEq(x-  1) - r/(x + 1)3 + (~ - f l ) E q ( x -  1) q(x) - q ( x )  r/(x + 1)3 

(1.9) 

It is the second term on the right side of the last equality in (1.9) 
which causes problems. By (1.8), there is a term, if ~r apparently 
O(e-1) and containing only a first derivative of the test function. This is the 
characteristic difficulty in nongradient models. In addition, if ~ :~ p, the 
duality is destroyed and one must use other methods. 

I next discuss the invariant measures for our process and 
hydrodynamic scaling of the initial state. We will make use of "grand 
canonical" states, product measures with periodically varying densities. If 
the density of this product measure is taken to be Pe at even sites and Po at 
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odd sites, then this measure will be time reversible (hence time invariant) 
provided the detailed balance condition 

C~pe(1-- po) = ~(1-- pe) Po (1.10) 

is satisfied. One can then define the average density by 

1 
P=-~(Pe+Po) (1.11) 

One can express Pe and Po in terms of c~, fl, and p if one wants, but it will 
be more convenient for computations to parametrize these states in terms 
of a fugaeity ( by setting 

(1.12) Oe=~+~ , Po=(+ 3 

It is obvious that the corresponding product measure with these densities 
satisfies detailed balance. We denote it by #~. [The general time-invariant 
measure (with a fixed number of sites) is obtained by conditioning on the 
particle number N = Z  t/(x) and taking arbitrary convex combinations.] 
Note that there is an invertible relation p = p(~) defined by 

1 
p = ~ [#d~(0))  + # d . ( 1 ) ) ]  (1.13) 

For the first theorem we will need to make the initial density slowly 
varying. It is convenient to make use of the parametrization (1.12), making 
the fugacity slowly varying. Given a continuous function ~: [0, t ]  
(0, + oo) with ~(0) = ~(1), define 

#~ ~(x) = 1-I ~(~x) ~ l-I ~(~x) +/~ 
21 . . . .  A~(PsX) "t- 2~y, yEA 

(1.14) 

It is easy to see that #~ defines a density profile in the hydrodynamic limit 
in the sense that, for all 6 > 0 and ~b, 

#~ X;(~b)- (b(r) po(r)dr > 6  ~ 0  (1.15) 

as e ~ O, where po(r)= p(((r)). We write P" and E ~ for the path measure 
and expectation (respectively) with respect to the process with initial 
state #~. 

Before stating the theorems, let us recall the form of the hydrodynamic 
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equation for a reversible model with a single conservation law. In this class 
of models we expect the density field to have a hydrodynamic scaling limit 
satisfying a (typically nonlinear) diffusion equation. Thus, we expect to find 
for the limiting expected density 

f2 lim E~X~(~) = ~(r) p(r, t) dr (1.16) 

where p(., �9 ) satisfies 

-~ P = -~r Z)~P ) -~r 
(1.17) 

p(., 0 ) -  po(.) 

In (1.17), D(p), the bulk diffusion constant, should be some positive 
function of p (possibly constant). In general, D(p) is given by the Green- 
Kubo formula (see Section 5), and so cannot be determined except by a 
detailed analysis of the model. Gradient models are the exception to this 
rule: the bulk diffusion constant can be determined by a time-zero com- 
putation using a local equilibrium state. I give this computation to help 
clarify the meaning of the gradient property. 

For simplicity assume translation invariance of the rates and invariant 
measures (the periodic case is similar). We compute the time derivative of 
the expected density field at t = 0 in the limit e ~ 0. This is expressible in 
terms of the Dirichlet form of the process given by 

1 l(fx, x + ( f ( - L ) f ) = ~ ( c x ,  x+ ~ f )z~  (1.18) 
x 

In (1.18), ( - )  denotes equilibrium expectation and cx.~+~ is the rate 
function for interchanging the occupations at x and x + 1. For convenience, 
introduce a chemical potential 2, i.e., write ~ = exp(2). Making the chemical 
potential slowly varying in the initial state and using the bilinear form of 
(1.18), we obtain 

d oE~.X~(g~)=(exp[~,2(ex)rl(x)] ~ 2(_L)X~(~) ) 

1 
= -~ e Z 2'(ex) O'(8x) It~{Cx,~ +l [~/(x) - t/(x + 1)] 2 } + O(~) 

x 

f2 ~ o '  2'(r) fb'(r)(co, l[rl(O)-rl(1)]z) dr 

= p'(r) O'(r) ZS(p) ar (1.19) 
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In (1.19), /)(p) is given by 

D(p)= [z(p)] '(c0,,[.(0)-~(1)]2)(p) (1.20) 

and ;~(p), the equilibrium compressibility, is defined to be dp/d2. 
Comparing (1.17) with (1.19) and ignoring (at our peril) the problem 

of interchanging the time derivative with the hydrodynamic limit, we 
conclude that D(p)=f)(p) .  However, we shall see in Section 5 t h a t / ) ( p )  
contains only the first term in the Green-Kubo formula for D. In the 
gradient case this is correct, as the second term vanishes. In the non- 
gradient case the second term makes a nonvanishing contribution to D, so 
the interchange of derivative with limit above is faulty. In particular, the 
calculation above gives the wrong answer for our model. (It predicts that 
the hydrodynamic equation is nonlinear, while in fact it turns out to be 
linear.) Clearly, in the nongradient case the diffusion constant cannot be 
correctly computed from a local-equilibrium hypothesis alone. [One can 
also see the problem by computing the time derivative on the left side of 
(1.19) in terms of the current functions. To compute the limit, one needs to 
know the e correction to the local equilibrium state. But this is of 
dynamical origin.] 

2. RESULTS 

T h e or e m 1 (LLN for the density field). 

1 dr >3]  0 P~ [ Xt(q~)- fo (~(r) p(r, t) --+ 

as e ~ 0. Here p(-, �9 ) is the solution of the diffusion equation 

0 2~fl 6 2 
c3t p(r, t) ~ + fl Or 2 p(r, t) 

with initial condition 

For all 6 > 0 and t ~> 0 

(2.1) 

(2.2) 

Remarks. (i) Actually we will obtain the following stronger result: let 
Q~ be the path measure of the process X'(.) ,  regarded as a process in the 
space of positive measures on [0, 1], and let Q be the measure of the deter- 
ministic process supported on the single path t ~ p(., t) dr. Then Q, -~ Q 
weakly as e -+ 0. (ii) We do not need to insist on the particular form of the 
initial state specified in (1.14). All that is necessary is that the initial state 
define an initial density profile and satisfy an entropy bound; see Section 4 .  

p(., o)= po(-) (2.3) 
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For the next theorem we need to define the density fluctuation field for 
the equilibrium process. Given a test function r and t/> 0, let 

Y~(~b) = ~ -1/2 { X~(~b) - EX~(~b) } 

___~1/2 {Z ~('f'X)[?~e-2t(X)--Pe]~- 20('~X)[~e-2t(X)--Po]} (2.4) 
2Ix 2/:x 

Theorem 2 (CLT for the density fluctuation field). For the 
equilibrium process and every ~b and t >~ 0 

Y~(~b) a y,(r (2.5) 

(convergence in distribution), where Y.(.) is the Gaussian generalized 
Ornstein-Uhlenbeck process (v) with covariance 

EYe(q)) Y~(O) = Z(P)(~, eE2~/(~+~)l ~'~')2 (2.6) 

where A denotes ~72/0r2, (., ")2 is the inner product in L2([0, 1]), and Z(P) 
is given by 

dp 1 
Z(P) - d2 - 2  [pe(1 -- fie) + Po( 1 -- Po)] (2.7) 

Remark. Again, the result actually proven is considerably stronger 
(weak convergence of path measures). 

3. A KEY IDENTITY  

In Section 2 we found a term in the time derivative of the density field 
apparently of order O(e-i).  Here is a trick which allows one to overcome 
this apparent difficulty. By an explicit computation one discovers that 

L{~( - 1 ) , ( 0 ) -  q(O) ~(1)} = ~ [ q ( - 2 )  q(O) - q(O) q(2)] 

+ (fl- ~)En(-2) ~(- l) q(o)-.(o) q(1) q(2)] 

- (c~ + f l ) [ r / ( -  1) t / (0 ) -  r/(0) r/(1)] (3.1) 

This curious equation solve our main problem, for it allows us to express 
the troublesome term in (1.8) as the sum of "gradients" (over two lattice 
sites) of local functions and a time derivative. In fact, from the com- 
putations above we have 
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;o{ } EX,(O) = EX~((~) + ~ ~ O"(~x) Ehx(.~ 20 dr 
2Ix 

+ ~ ~ ~-~O'(ex) ELgx(q, 2,) & + O ( e )  (3.2) 
2ix 

In (3.2) a subscript x on a function denotes that function shifted in space 
by x, and g and h are local functions given by 

f l - ~  g = 7 - ~  [ q ( -  1) r / (0 ) -q (0)  r/(1)] (3.3) 

and 

h=2 ~,7(-1)+7- ~ [~,7(-2),1(0)-(~-~)~(-2),7(-1) ,7(0)] 

1 
+ ~  { - j ( - 1 ,  0) + j (0 ,  1)} (3.4) 

The third term on the right side of (3.2) is negligible since it equals 

e 2 ~ (~'(ex)Egx(rl~-2,)-e 2 ~ ~b'(ex)Egx(rlo ) (3.5) 
2ix 2Ix 

which is of order e. 
Since only the first two terms in (3.2) will contribute in the limit, one 

can determine the bulk diffusion constant from (3.2), (3.4), and a local 
equilibrium ansatz. Assuming that the state at macroscopic time t 
(microscopic time e 2t) and macroscopic location r (microscopic location 
[e ~r]) is an invariant measure with parameter adjusted so that the local 
density is p(r,t),  p(., .), the solution of (2.2), we find that in the 
hydrodynamic limit (3.2) should yield 

~(r) p(r, t) dr = (~(r) p(r, O) dr + ~ O"(r) a(p(r, s)) ds (3.6) 

where a(p) is given by 

a(p) = #,(p)(h) (3.7) 

Equation (3.6) is a weak version of the equation 

0 1 ~2 
Ot p(r, t) = ~ ~r 2 a(p(r, t ) ) (3.8) 



Interacting Particle Process 883 

We conclude that the diffusion constant should be given by 

1 C  
D(p ) = ~ -~p a(p ) (3.9) 

The latter can be computed with the help of the parametrization given 
in (2.3). 

We first compute the right side of (3.7) as a function of ~. Noting that 
the current functions in (3.4) do not contribute (they have mean zero by 
the detailed balance condition), we obtain, after some algebra, 

aft ~ ( 2 ~ + a + f i )  #r = 2 - -  
+ 

= 2 ~ - f i  (Pe "3U Po) (3.10) 

This gives 

2~fl D(p) - (3.11) 
a + f l  

Thus we expect to get a linear diffusion equation in the hydrodynamic 
limit, as stated in theorem one. 

4. P R O O F S  OF T H E  T H E O R E M S  

Proof  o f  Theorem 1. We have from standard Markov process 
theory (2,1o) 

X;(~b) - X~(~b) = f~ ~-2LX~(~b) d~ + M~(q~) (4.1) 

where M~(~b) is a martingale satisfying 

E(M~(q~)) 2 = fo ~ -2E[L(X~(q~))2 - 2X~LX~]~-2, dr (4.2) 

By direct calculation, the right side of (4.2) equals 

E ,~2 Cx, x+l[~t(~,X)]  2 [t/e-2r(X"~ 1)--T/~-2T(X)] 2 dT"~-O(~,) 

(Cx, x+l are the rate functions), which is O(~). 
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To treat the drift term in (4.1), we use the trick introduced in Sec- 
tion 3. Let 

G~(tl) = e 2 ~ O'(ex) gx(tl) (4.3) 
2Ix 

Adding and subtracting G~-G~-2t (which is of order e) in (4.1), we have 

X~(O)- X~(fb ) = f~ {~ ~x fb"(~x) hx(rl~-2~) } dr 

+ M~(~b) - N~(~b) + O(E) (4.4) 

In (4.3), N~(~b) is another martingale (the one associated with the function 
G*), with quadratic variation 

E(N~) 2 = fo' e- 2E[ L(G') 2 - 2G'LG']~ 2 3 d,c (4.5) 

The first term in square brackets in (4.5) integrates to a difference which is 
O(e). For the second term apply (3.1) again, which states that 

Lg = -(c~ + fl) g + (gradients over two lattice sites) 

Since G' is O(e), the gradients contribute O(e), while the term in g con- 
tributes 

{ 2(c~ + fl) f t E e 2 (Y(ex) dr (4.6) 
JO 2Ix e-2~ 

which will be shown later to vanish as e ~ 0. 
Given these facts, Kolmogorov's inequality for martingales tells us 

that, for all 6 > 0 and T, 

, [ 0 s u p r  X~(cb)-X~(fb)-f2{ea~lx~b"(eX)hx}_2dv > 6 ] - - * 0  (4.7) 

We have reduced the problem--the reader may balk at this expression--to 
treating properly normalized integrated drift terms of the type present in 
(4.4) and (4.6). This is now standard, using either large-deviation 
methods (9) or entropy arguments. ~6) These arguments yield 

fo [ lim lim ~ E e 2 (~(ex) f~(tl~ 23) 
l ~ 0  2Ix 

- f  ~ Z t/, 2,(y) dr ~ 0 (4.8) 
x<. y<~x+g-12l 
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In (4.8), f i s  a local function a n d f i s  a function of one variable given by 

f (p)  = #p(f)  (4.9) 

[I remark in passing that the only assumption on the initial state needed 
for (4.8) in our context is a bound on the relative entropy with respect to 
an invariant measure; see refs. 6 and 16.] Equation (4.8) allows us to 
replace a properly normalized space-and-time average of a local function 
by a similar average of a function of the local density. It is this result which 
allows one to close the equation for the density field. 

We can now complete the proof of the theorem. The expression in 
(4.6) vanishes by (4.8)-(4.9) and the fact that 

#p(g) = 0 for all p 

The LLN follows from a compactness argument (note that due to the 
exclusion, a bound on the density field is trivial), (4.1)-(4.9), and uni- 
queness of the solution of (a weak version of) the PDE (2.8), which is stan- 
dard, since the equation is linear. (6'16) This completes the (sketch of) the 
proof of Theorem 1. 

Proof of Theorem 2. The proof of Theorem 2 uses the Holley- 
Stroock martingale characterization of generalized Ornstein-Uhlenbeck 
processes (7) and the "Boltzmann-Gibbs" principle introduced in ref. 1. I 
follow the line of argument developed in refs. 3 and 14. Let us begin by 
decomposing the fluctuation field into drift-plus-martingale in the usual 
way. We find 

Y~(~b) = r~(~b) + s 2[LY*(~b)],-2, dr + 37/~(~b) (4.10) 

~r162 in (4.10) is a martingale. 
In gradient cases one proves that the two terms in (4.10) seperately 

have a limit which moreover give the corresponding objects in the decom- 
position of the Ornstein-Uhlenbeck process. This process is characterized 
precisely in ref. 7, but informally it has a decomposition 

Y,(~b) = Yo(~b) + Y,(AO)dT+ W,(Bqb) (4.11) 

where W.(.) is a Gaussian generalized process (the time integral of white 
noise in spacetime) with covariance 

f2 EW,(qb) W,(O)=s /x t (k(r) ~k(r) dr (4.12) 
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and the operators A and B are given by 

2~fl 0 2 
A = - -  

+ fl 6~r 2 

2aft -~1/2 0 
B= Z(")~+flj & 

(4.13) 

The choice of A here reflects the accepted wisdom that fluctuations 
propagate by the linearized hydrodynamic evolution and the choice of B 
follows from the fluctuation-dissipation theorem (a consequence of 
stationarity): 

AZ(p) + )~(p) A* = -B*B 

In the nongradient case neither term in (4.10) has the proper form to 
have the expected limit. Computing as in (1.8), the drift in the original 
process equals 

gl/2 2 g lo '(ex)[j(x--  1, x ) + j ( x ,  x +  1 ) ]  
2ix 

+ - ~  (b"(~x)[-j(x--l,x)+j(x,x+l)] dz+O(e) (4.14) 
2Ix 8-2"~ 

The first term in (4.14) is not a properly normalized fluctuation field. (The 
second is, but will not contribute in the limit; see below.) Additionally, the 
quadratic variation of the martingale in (4.10) equals [computing as in 
(4.2)1 

E(a?~)2 = to Z (Cx,x+,[,(x + 1 ) -  n(x)]2}(4'(~x))~ + 0(8) 
x 

( ( - }  denotes equilibrium expectation), which tends to 

< C_ 1,0[/'/( - -  1 ) - -  ~ ( 0 ) ]  2 hi- C0,1 [/1(0) - -  /'/(1 ) ] 2 > [{,bt(r) ] 2 dF (4 .15)  

The prefactor of the integral in (4.15), which should be Z(P)D(p), is not 
correct. (We shall see that it contains only the first term in the Green- 
Kubo expression for the diffusion constant; see the next section.) 

We conclude from this analysis that we must somehow split the 
integrated drift term in (4.10) into a properly normalized fluctuation field 
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and a martingale. Again the identity (3.1) comes to our rescue. The drift 
term splits as 

rod/~ ~ O"(~x)(h~- (h}1,--~ a~ 
2Ix  

+ e-t~2 2 qk'(ex)(Lg~), 2, dr+O(e) 
2Ix 

(4.16) 

For convenience, let us use the notation, given a local function f, 

I~(f; ~b) _ el/2 ~ O(ex)(f~ -- ( f ) )~-2t  
2Ix 

With this notation and adding and subtracting 

~ ( g ;  , -~ . 
) - ~ r ~ , ( g ,  4 ' )  

in (4.16), we obtain the decomposition of the fluctuation field 

Y~(~) = if~(h;~")dz+eY~(g,~ ) -  ~I~(g; ~b ') 

+ 2Qt(~b ) - ,~(g;  q~') + O(e) (4.17) 

In (4.17), N~(.) is another martingale, and the second and third terms on 
the right side are O(e). 

Given a decomposition of the type given in (4.17), the proof of 
Theorem 2 is (almost) standard. I shall confine myself to a discussion of 
how the drift term in (4.17) can be replaced by a multiple of the density 
fluctuation field when passing to the hydrodynamic limit (the so-called 
"Boltzmann-Gibbs" principle), and to a computation of the total quadratic 
variation of the two martingales. Given these results, the proof of 
Theorem 2 then follows essentially the identical route as for gradient 
models treated previously. (~-3,~4) 

Just as for the density field, to close the equation we must replace the 
integrated drift term by a (in this case linear) function of the original field. 
The following result does the job: For every local function h and test 
function ~b 

( }2) 
lim E % �9 ' " [Y~(h, qk)-a(h,p)  I>~(t/(0)+q(1);~bl] d'r = 0  (4.18t 
a ~ 0  
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where 

d 
a'(h; p)=---;--#~p~(h) (4.19) ap 

Note that the second field in square brackets in (4.18) is essentially the 
original fluctuation field. (4.18) says that the only component of I?~(h; ~b) 
which matters in the limit is the component along the density fluctuation 
field. The proof of (4.18) is the same as that in ref. 3, with the minor 
difference that translation invariance is replaced by invariance under 
translations by two lattice sites, and the considerable simplification that the 
Gibbs state in our case is a product measure. Equations (4.18)-(4.19) also 
yield that the second term in (4.14) vanishes in the limit. 

Finally, let us compute the limiting quadratic variation (mean square) 
of the difference of the two martingales in (4.17). We have already com- 
puted the quadratic variation for 3~/.. Since N is the martingale associated 
with the function e~'~(g; (~), we have 

E(/~/-t) 2 = 21( Ye(g; ~'), ( - L )  I2,(g; ~b')) 

l( )3 = 2(~ + ~) ~/~ S r gx 
2Ix 

~-.o' 2(~ +fl)  [(b'(r)]2dr~ (gg~) 
x 

(4.20) 

In the third line we have used that g is an eigenfunction of L (except for a 
gradient). In a similar fashion we obtain for the cross term 

EM, N t = 4t 2~x qk'(~x) gx (~(ex) L~l(x) 

= ( -4t ) (~  +/~)~ ~'(~x) g~ + o(~) 

~ o '  (--4t)(~ + fl) f~ [(k'(r)]2 dr ~ (ggx) 
x 

(4.21) 

Combining, we have 
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lim E(~7/~ - ~ ) 2  
s ~ O  

= [~'(r)]2ar (c 1,o[~(-1)-~(0)]2+Co,1[~(0)-n(1)] 2) 

-2(c~+~) F~ (ggx)t (4.22) 
2Ix ) 

In the next section 1 show that the expression in curly brackets in (4.22) 
equals Z(P)D(p), as one expects. This completes the partial sketch of the 
proof of Theorem 2; see the indicated references for the full treatment. 

5. THE G R E E N - K U B O  F O R M U L A  

The Green-Kubo formula gives the bulk diffusion constant in terms of 
current-current correlations. (2'13) For reversible stochastic models it has 
two terms with opposite sign. For our model it reads 

1 
2Z(p) D~K(p) =~  ( j ( -  1, 0)I-r/(- 1 ) -  r/(0)] + j(0, 1 )[-r/(0) -- q(1 )] }p 

E (  1 ;~ l l f  ~ )z - tim lira j,(x, x +  1) dt ( 5 . 1 )  
T ~ o o  e ~ O  ~ = 

In (5.1), ( .  }p denotes an equilibrium average and the expectation in the 
second term is with respect to the equilibrium process with density p. 

Curiously, in our model the second term can be explicitly calculated. 
This is because the total current is an eigenfunction of the generator. From 
(1.9) we find, defining 

~ j = ~ j ( x ,  x+ 1) (5.2) 
x 

that 

This gives for the second term in (5.1) 

= lim lim dz dr' e -(~+~)~') e j, ~ j  

(5.3) 

822/54/3-4-21 
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= 2(a+fl)-I / 1, O)Z+~j(O, 1) 2 ~ j (_  1 

+ j ( -1 ,  0)j(0, 1)+j(0, 1)j(1, 2)1 (5.4) 

One finds, by explicit computation using (1.6), that the terms involving 
j(., .)2 in (5.4) exactly cancel the first term in the Green-Kubo formula 
(5.1). Computing the remaining terms using (1.6) and (1.12), one finds after 
a little algebra 

DaK = 2afl/(a + fl) (5.5) 

in agreement with the bulk diffusion constant, as physical reasoning 
predicts. 

We must also check that Do~: agrees with the diffusion constant we 
found in fluctuation theory. This is easily done; starting again with (5.1) 
and using (1.8), (1.9), and (3.1), we have 

~ j ( x ,  x +  1)= ~ Lgx (5.6) 
x 2 I x  

and remembering that 

Lg = - ( ~  + fl) + (gradients over two lattice sites) 

we see that the second term in Green-Kubo comes out to be 

-2(~+fl) ~ (ggx> 
2 I x  

in agreement with (4.22). 

6. R E M A R K S  

I. The attentive reader may have noticed that I used the basic 
decomposition given in (3.1) in two different ways. In proving Theorem 1, I 
kept the contribution from the gradient but the contribution from the term 
containing the generator proved to be negligible. But in computing D~K 
just the reverse held: the gradient made no contribution, but the term in Lg 
contributed the second term in the Green-Kubo formula. 

2. One might ask whether or not the situation changes if the period 
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is chosen to be three or higher. One might conjecture that the diffusion 
constant is given in general by 

n 1/C~i 1 + 1/~i 
t 

where n is the period. This amounts to the belief that the only effect of 
putting a model in a periodic (or perhaps random) inhomogeneous 
environment is to modify the diffusion constant by a (constant) factor. (A 
result supporting this conjecture has been announced by Fritz, (5) who dis- 
cussed a Ginsburg-Landau type model in a random environment.) 

Unfortunately, I have not been able to find an analogue of the identity 
(3.1) for higher periodicity and it is possible that no decomposition of the 
sum of the n current functions in terms of local functions exists for n/> 3. 
That such a decomposition in terms of possibly nonlocal functions always 
exists can be seen by using the Hilbert space introduced in ref. 1. Defining 
an inner product by 

((f ,  g)) =- ~ ( f g x )  (6.2) 
nix 

one finds that L is still a self-adjoint nonpositive operator in the Hilbert 
space with this inner product and that Z~ j(x, x + 1) is orthogonal to the 
eigenspace of eigenvalue zero. Therefore, one can always solve the equation 

j(x, x +  1 ) = L g  (6.3) 
i = 1  

up to a zero element in this norm, which is a "gradient" over n lattice sites. 
However, there is no guarantee that the functions so defined are local (i.e., 
they may vary with e). In this case the argument would become much more 
delicate than in this paper. 

Lacking a generalization of (3.1), I have no convincing argument for 
the conjecture that D is given by (6.1) and the hydrodynamic equation 
remains linear for n ~> 3. 

NOTE ADDED 

I thank a referee for pointing out previous work on the same 
modelj~8 20) 
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